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Abstract 

Mu2e is a particle physics experiment hoping to observe charged lepton flavor violation 

currently in the design phase at Fermi National Accelerator Laboratory. The experiment utilizes a straw 

tracker, which uses small amplification devices known as preamps. The preamp is still being designed, 

with changes being made to increase gain, optimize the shape of the response, and minimize noise. This 

paper focuses on one round of modifications. At the end of this study, the current design of the preamp 

was exhibiting a gain of 52 dB at its peak of 100 MHz, while operating at an RMS noise level of 10 mV. 

Introduction 

The phenomenon of Charged Lepton 

Flavor Violation, in which electrons, muons, and 

tau particles can readily transform into one 

another, is not explicitly forbidden in the 

Standard Model, though it has never been 

observed, due to the low probability of the 

necessary interactions, of the order 10 -50. One 

such interaction consists of a muon changing 

flavor into an electron with no neutrino 

production. This rare event is the subject of 

study for the Mu2e experiment currently being 

designed at Fermi National Accelerator 

Laboratory.  

Figure 1: 

 
 

 

 Mu2e utilizes a straw tracking system to  

determine the path of particles produced. The 

straws are composed of a long thin cylindrical 

Mylar shell (5 mm diameter) with a concentric 

wire running through it. Many straws are placed 

together in a vacuum chamber, and the straws 

themselves are filled with ArCO2 gas, which will 

become ionized when a particle passes through. 

A potential difference is established between 

the cylindrical shell and the wire, such that 

freed electrons move towards the wire and the  

ions are drawn towards the shell. This produces 

a detectable signal, signifying the particle was at 

that straw’s location at that given time. 

Knowing where on the length of the straw the 

hit occurred is also important for determining 

the particle’s path. This is achieved by having an 

amplification device called a preamp, at both 

ends of the straw. Since the current will move 

through the wire in each direction at the same 

speed, the time difference between when each 

end’s preamp registers the hit can be used to 

determine the location of incidence.  

 Development of the preamp is ongoing, 

seeking to maximize gain and stability while 

minimizing noise and cross talk. Cross talk is an 

unavoidable fact of having the preamps 

mounted so close together on the 

motherboard; signal from one preamp is 

inevitably transferred in part to its neighbors.  

Boosting the gain at key frequencies, known as 

shaping, is also an important goal. This 

optimization is achieved in general by making 

modifications to the current version of the 

preamp, sending the preamp a signal in the 

form of a sine wave, and characterizing the 

response, both quantitatively and qualitatively. 

Some example modifications include the 

amount of shaping, the values of certain 

electrical components, and the type of 

transistor used. This paper focuses on several 

versions of the preamp and the testing 

performed on them to optimize the gain and 

noise.  

Feynman Diagram depicting a muon changing flavor 

into an electron. Credit: http://mu2e.phy.duke.edu/ 
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Apparatus 

Figure 2: 

 

 A preamp, or pre-amplification device, 

is a small printed circuit board that amplifies an 

input signal. Many preamps are mounted 

together onto a motherboard, which provides  

the preamps with power, programs them via a 

1-Wire chip 1, as well as allowing their amplified 

signal to be seen on an oscilloscope. Each 

preamp has an inherent gain, measured in 

decibels (dB), which is a measure of the 

amplification factor related to the ratio of 

output and input signal amplitudes.  

              (
    

   
)  (eq. 1) 

Figure 3:  

 

 

 

The motherboard is controlled using an 

Arduino Due microcontroller 2. The Arduino 

provides information on which preamp to 

program, what to program it with, and also 

reports back if any preamps are unresponsive. 

The key piece of information shared by the 

Arduino is known as a balance number, so 

called because it controls how much current is 

on each leg of the output, which need to be 

balanced. The total current supplying the two 

legs is constant, and a transistor controls the 

amount of current flowing through each leg, 

depending on the voltages at points 1 and 2 on 

the preamp schematic (shown in Appendix A1). 

The balance number determines the voltage at 

point 1, chosen by the user such that both legs 

receive equal current when there is no signal. If 

the voltage at point 2 becomes higher than at  

Figure 4: 

 

 

Front view of a preamp. Dimensions 4.0 cm by 1.1 cm  

Motherboard, showing eight preamp channels (1), 1-

Wire Chips (2), power cable (3), four scope cables (4), 

and Arduino connector (5) 

1 

2 

5 4 

3 

Example plots for 100 MHz input signal. 
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Figure 5: 

 

 

point 1, due to a signal or noise, more current 

will be directed to one of the legs. The 

difference between the two legs now shows a 

detectable, nonzero signal. The balance 

numbers, unique to each preamp are fed to the 

Arduino by a Python script 

(“balance_varies.py”, A2), and subtly changed 

until both output legs have the same current. 

The total current level for the preamps can also 

be adjusted in Python and is communicated to 

the preamps via the same Arduino program. 

The balance and current numbers are stored in 

a text file, which Python reads in and transmits 

to the Arduino when prompted by the user. The 

text file is easily modified by the user, and 

“balance_varies.py” can be run continuously in 

a background python command window, 

allowing the user to update the balance or 

current whenever appropriate. Python was also 

used to save the oscilloscope data to be used 

for offline analysis. The script “read.py” (AII) 

captures the output waveform from the scope 

and saves the data as a text file, which can be 

re-plotted or otherwise manipulated later on. 

This script displays the waveform plot as well as 

the Fourier transform of the wave. Examples 

are shown in Figure 4. 

Methods and Results 

Original Preamp 

 This study began by analyzing the 

current version of the preamp, looking at the 

gain and cross talk levels. Two preamps were 

mounted on the motherboard, in channels 6 

and 7, and a 27 mV peak to peak amplitude sine 

wave signal was supplied from a signal 

generator. This signal was attenuated by 18 db, 

resulting in an amplitude of 2.5 mV. Their gain 

was analyzed for input signals in the 10 to 400 

MHz range. Their cross talk was also measured 

in this range. 

Figure 5 shows the amplitude versus 

frequency plot for the preamp in channel 7. This 

was produced by using the python program 

“read.py”. A computer is connected to the 

oscilloscope via a serial port, which allows the 

program to capture the output wave. This wave 

is then Fourier transformed, producing an 

amplitude versus frequency plot. The maximum 

amplitude occurs at the current frequency of 

the signal generator, with the other smaller 

amplitudes attributed to background noise. The 

maximum amplitude is determined for varying 

frequencies to produce a gain plot for each 

preamp, as shown in Figure 5. There is a fairly 

constant output amplitude of roughly 80 mV up  

Figure 6: 

 

Output signal amplitude vs. frequency for Preamp 7 

Cross talk for Preamp 7 
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until roughly 140 MHz, after which the 

amplitudes drop off steeply, with small 

undulations attributed to various resonances of 

the preamp. At 100 MHz, where much of the 

signal is expected for the experiment, the 

amplitude is 95 mV, with a noise level of 0.6 

RMS. The noise level was determined by finding 

the RMS amplitude of the output wave when 

the preamp was not connected to the signal 

generator.             

To measure the cross talk, a second 

preamp was mounted on the mother board, 

into channel 6. A signal was sent through this 

new preamp, but the output wave was read off 

of preamp 7. In a perfect world, no signal would 

be seen in Preamp 7, but due to how close the 

two preamps are mounted, some of Preamp 6’s 

signal gets transferred over to Preamp 7. The 

cross talk was measured just like the gain, at 

varying frequencies, shown in Figure 6. The 

cross talk amplitude is divided by the output 

amplitude measured earlier in Preamp 7, 

producing a plot of cross talk / amplitude versus 

frequency. The maximum acceptable amount of 

cross talk for the experiment is two percent, 

and the setup was modified until the cross talk 

was reduced to about that value. Modifications 

mostly consisted of adding copper tape to the 

backs of both preamps, as well as around the 

signal cable on Preamp 6. The copper tape 

acted like a Faraday cage, trapping field lines 

and preventing cross talk. Unexpectedly, lower 

cross talk was seen at higher frequencies, a 

phenomenon not fully understood at this point. 

However, after 60 MHz, the cross talk was well 

below two percent of the signal, a promising 

result.  

 The gain and cross talk measurements 

were repeated for Preamp 6. The noise level 

was about the same, but the gain was about 

half of Preamp 7’s, with about twice the cross 

talk at a given frequency. Due to this 

discrepancy, as well as the difficulty in obtaining 

a low enough cross talk value, a new version of 

the preamp was made. 

New Preamps 

 Figure 7:  

 

 

There were various changes made to 

the components on the preamp in this new 

version. One of the most significant was the 

addition of a “shaping capacitor,” which 

increases the gain, boosting it most dramatically 

in the 100 MHz range. Additionally, a new 

socket and pin style connector (instead of 

soldering the preamp directly to the 

motherboard as before) was used to mount the 

preamp to the motherboard, allowing it to be 

easily removed. This easy removal allows 

Top panel: output signal amplitude of 50 mV. Bottom 

panel: output signal amplitude of 250 mV. 
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modification to be made to a single preamp, 

and then for immediate testing and analysis of 

these changes by remounting the preamp. This 

revolutionized the testing methods contributing 

to accelerated optimization of the preamp. 

Since the gain was so much greater on 

these new preamps, the input signal had to be 

adjusted. The signal now consisted of a 50 mV 

peak to peak sine wave from the generator, 

attenuated by 38 dB, producing a 0.63 mV 

signal on the scope.  

 Shaping Capacitors 

To shape the gain response of the 

preamp, an RC circuit section was added to the 

preamp, denoted by “3” on the schematic in 

Appendix AI. At high frequencies, specifically 

higher than      ⁄ , the capacitor acts like a 

short in the circuit. This very low impedance 

allows for higher gain. In this case, a 100 pF 

capacitor was used to boost the signal 

everywhere, but most significantly at 100 MHz. 

This change is seen in the top panel of Figure 7, 

which shows the waveform of a new preamp 

for an input signal of 100 MHz. The output 

signal amplitude is greater by a factor of five, 

and a clear peak was observed near 100 MHz, in 

contrast with the bottom panel showing an old 

preamp at 100 MHz. Unfortunately, the shaping 

made the preamp very unstable, meaning it was 

sensitive any touching or movement. Touching 

the preamp with a finger or metallic tool adds 

capacitance to that point in the circuit, which 

can be the tipping point in an already unstable 

circuit. Additionally, the boosting greatly 

increased the cross talk.  

Table 1: 

The first solution, the simple solution, 

was to remove the boosting capacitor. This 

drastically reduced the gain, but this loss was 

balanced by an increase in stability. For the final 

experiment, where fifty thousand preamps will 

be used, stability is key, perhaps even more so 

than the gain.  

Eight preamps were made with the 

boosting capacitor removed, all of which were 

individually tested for gain and noise levels 

before being mounted together onto a 

motherboard. The individual gain and noise 

measurements were very consistent (Preamp 2 

is a notable outlier), with a noise to signal ratio 

of under five percent, summarized in Table 1. 

Initially, the cross talk and noise values were 

very high when all eight preamps were 

mounted onto a single motherboard. This was 

easily mediated by covering the back of the 

preamp with a layer of insulating Kapton tape 

and then a layer of grounded copper tape, 

serving as a small Faraday cage. With these 

tapes in place, the noise to signal ratio dropped 

to eight percent. This is higher than the ratio for 

individually mounted preamps, which is an 

expected and unavoidable artifact of the close 

mounting.  

While the stability issue was overcome 

by removing the boosting capacitor, this is not 

exactly an acceptable solution. While the 

preamps with no boosting were working with 

low noise and high stability, the possibility of 

achieving those same results with higher gain 

justified further testing to search for a solution 

that did not involve removal of the boosting 

capacitor.  

BFP520 versus BFP720 Transistors 

There are five transistors on the preamp, three 

of which are BFP520; these control the output 

stage of the preamp. The two which are 

originally BFP720 control the input stage. Both 

the 520 and 720 are NPN polarity RF transistors, 

Preamp # Balance # Voltage Drop Output Amplitude (mV) Noise RMS

0 22800 70 21 0.35

1 22600 74 23 0.38

2 22900 65 48 0.6

3 22400 74 21 0.34

4 22300 75 21 0.36

5 23100 70 24 0.36

6 21800 73 20 0.33

7 22300 71 22 0.35
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but the newer 720, made of a silicon 

germanium material, has a faster transition 

frequency which allows for higher bandwidth.  

Unfortunately, the 720 transistors on the 

preamp added to the instability. By changing 

them to 520 transistors, we achieved the same 

gain, with significantly less noise and stability 

issues.  

Figure 8: 

 

Some instability remained, even after 

changing the transistors. The cause was tracked 

to a small via in the center of the preamp, 

shown in Figure 8. Touching this via with 

tweezers or other small metal tool, in other 

words adding capacitance, greatly reduced the 

noise, and increased the gain by about ten 

percent. Placing a small piece of copper tape 

over just this via on the back achieved the same 

results. This procedure was applied to three 

preamps, with all 520 transistors and the 

boosting capacitors. They all had consistent 

output signal amplitude of over 300 mV, with 

anoise amplitude of roughly 10 RMS. This is 

summarized in Figure 9.  

Grounding Improvements 

The small via causing the instability in 

the 520 preamps was originally designed to 

provide grounding for a resistor and capacitor, 

denoted R11 and C6. During testing, a better 

ground source was found for them in the form 

of a ground plane directly above them. When 

the green mask on the board was scraped off, it  

 

Figure 9: 

 

 

 

was possible to solder the two components 

from one of their designated pads onto the 

exposed copper. By providing this better ground 

source, the instability all but disappeared. For 

something to be well-grounded, it needs to be 

connected to a ground source directly, with as 

little impedance as possible. Since thin wires or 

traces and vias have small cross-sectional area, 

they have high impedance. This can cause small 

voltage variations in the supposedly constant 

ground source. It is best to connect one side of 

a component directly to ground or to use a thick 

trace. In this instance, by connecting R11 and 

C6 directly to ground instead of using a small via 

provided more stability. 

Figure 10 shows the gain for three 

example preamps, with 520 transistors and the 

flipped resistor and capacitor. There is very 

good consistency across all the preamps, and a 

clear peak at 100 MHz as expected. The noise to 

signal ratio was also very low, with RMS noise 

levels of less than 8 mV when the preamps 

were mounted alone. Figure 10 also includes a 

SPICE simulation of the circuit’s response, which 

matches very nicely with the experimental data.  

 

Back view of preamp: arrow denoted unstable via 

Output signal amplitude versus frequency for three 

preamps, with BFP520 transistors and a small piece of 

copper tape over via. 
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Figure 10: 

 

 

 

The cross talk for three preamps is 

shown in Figure 11. While the three preamps 

had a moderately similar response, the cross 

talk to signal ratio was higher than the allowed 

two percent. At time of writing no measures 

had been taken to lower the cross talk. 

Figure 11: 

 

 

Conclusions 

At the end of this study, the current best version of the preamp includes all 520 BFP transistors, a 100 pF 

boosting capacitor, and flipped resistor and capacitor. The gain of the original preamp version was 32 dB 

at its peak. This version had a peak gain of 52 dB, with a RMS noise level of 5 mV when mounted 

individually; an improvement in gain by almost a factor of two. The cross talk remains an issue, and 

future experimentation will have to be performed to determine a method of reducing the cross talk to 

signal ratio to the requisite two percent. Additionally, the layout of the preamp must be changed, so 

that the resistor and capacitor flipping is built in. While this is not yet the final version of the preamp 

ready for the experiment, the preamp in its current state is suitable for use in testing other equipment.  
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Gain in dB versus frequency for three preamps, 

compared with simulated data (Blue) 

Cross talk to signal ratio for three preamps with 520 

transistors and flipped components. 
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Appendices 

A1: Preamp Schematic 

 

A2: Python Code  

“balance_varies.py” 
import serial 
import time 
import struct 
 
def packIntegerAsULong(value): 

"""Packs a python 4 byte unsigned integer to an arduino unsigned long""" 
return struct.pack('I', value) 

while 1: 
opt = input("Enter 1 to initialize (999), 2 to program: ") 
ser = serial.Serial(port="COM9",baudrate=115200, timeout = 2) 
time.sleep(1) 
a1 = [] 
 
if opt == 3:  

#break out of loop 
ser.close() 
break  

1 2 

3 
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elif opt == 1: 
#999 file 
with open('999') as f: 

for line in f: 
data = line.split() 
a1.append(int(data[0]))  

num = a1[0] #number of preamps 
elif opt == 2: 

#upload file to arduino on COM9 
with open('bal4') as f: 

for line in f: 
data = line.split() 
a1.append(int(data[0])) 
#print a1  

num = a1[0] #number of preamps 
num2 = packIntegerAsULong(num) 
ser.write(num2)  
#ser.write each line in file 
for i in a1[3:]: 

#print i 
val = packIntegerAsULong(i)  
#print binascii.hexlify(val)  
ser.write(val)  

time.sleep(.5) 
for i in a1[3:]:  

# print i 
line = ser.readline() 
print line 

#read each preamp  
if a1[3] != 999: 

for n in range(int(num)): 
#time.sleep(5) 
print ser.readline() #0 or 1 for talking to channel 
print ser.readline() 
print ser.readline() #DACA reading 
print ser.readline() #DACB reading 

elif a1[3] == 999: 
print ser.readline() #reading DACA 
print ser.readline() #DACA Data 
print ser.readline() #reading DACB 
print ser.readline() #DACB Data 
print ser.readline() #no more addresses 

ser.close() 
f.close() 

 
“read.py” 
import numpy as np 
import matplotlib.pyplot as plt 
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import serial 
import time 
 
scope=1 
 
ADCLSB = 100*0.0390625 #(10 mV) 
N=5000 
nplot=5000 
frate=5000 
 
if scope: 

ser = serial.Serial(port="COM5",baudrate=38400) 
ser.write("HEAD OFF\r\n".encode()) 
ser.write("DAT:WID 1\r\n".encode()) 
ser.write("DAT:ENC RPB\r\n".encode()) 
ser.write("DAT:STAR 1\r\n".encode()) 
ser.write("DAT:STOP 10000\r\n".encode()) 
ser.write("ACQ:STOPA SEQ\r\n".encode()) 
ser.write("DESE 1\r\n".encode()) 
ser.write("*ESE 1\r\n".encode()) 
ser.write("*SRE 32\r\n".encode())  
ser.write("*WAI\r\n".encode()); 
ser.write("ACQ:STATE RUN\r\n".encode())  
ser.write("*OPC?\r\n".encode())  
ser.readline() 
ser.write("DAT:SOU CH4\r\n".encode()) 
ser.write("CURV?\r\n".encode()) 
seq1=[] 
 
for i in range (1,10009): 

c=ser.read() 
if i > 9 and i<10009 : 

seq1.append(128-ord(c))  
time.sleep(1) 

else: 
seq1=[] 
with open("520_st1_100") as f: 

for line in f: 
numbers_float = map(float, line.split())  
seq1.append(numbers_float[0]) 

f.close() 
 
diff = [ADCLSB*float(m) for m in seq1] 
diff=diff-np.mean(diff) 
seq11 = [ADCLSB*float(i) for i in seq1] 
print len(seq1) 
print "RMS=",np.std(diff) 
x=[0.2*float(i) for i in range(0,len(seq1))] 
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#PLOTTING 
#wave plot 
fig = plt.figure(0) 
ax2 = fig.add_subplot(111) 
ax2.plot(x[:N],diff[:N]) 
plt.title("New Preamp Waveform") 
plt.ylabel("Amplitude (mV)") 
 
#fourier plot 
fig1 = plt.figure(1) 
ax3=fig1.add_subplot(111) 
ft0 = np.fft.fft(diff*np.hanning(len(diff))) / (len(diff)/4) 
freqs = np.fft.fftfreq(len(ft0),1./float(frate)) 
logft0 = 2 * abs(ft0) 
xft0=[i for i in freqs] 
ax3.plot(xft0[5:nplot],logft0[5:nplot], label='') 
ax3.get_yaxis().get_major_formatter().set_useOffset(False) 
ax3.set_xscale('log') 
plt.xlabel("Frequency (MHz)") 
plt.ylabel("Fourier Amplitude") 
plt.title("Cross Talk") 
plt.title("Fourier Plot") 
plt.show() 
 
if scope: 

ser.close() 
f=open('outtest','w')  
for i in range(0,len(seq1)): 

buf = "%7.4f\n" % (seq1[i]) 
f.write(buf) 

f.close() 
 

 


